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It is proved that the most general conformally fiat singularity-free solution for 
charged dust in static equilibrium must be spherically symmetric and the 
solution is unique. It matches with exterior Reissner-Nordstr~m metric. The 
manifest form of the metric conformal to Minkowskian metric is also given. 

1. INTRODUCTION 

There is at present a good amount  of literature in general theory of 
relativity on static charged dust in equilibrium. There are a few general 
theorems as well as some special solutions for such a distribution. One of 
the interesting results about charged dust in static equilibrium obtained by 
De and Raychaudhuri  (1968) is that the density of charge Iol is equal to 
the density of mass p in relativistic units. The metric then belongs to the 
interior Papape t rou-Majumdar  class (Papapetrou, 1947; Majumdar, 1947; 
Das, 1962). One can generate special classes of solutions in this case 
choosing either a physically reasonable matter density or the metric 
satisfying suitable boundary conditions. Explicit solutions for charged dust 
in equilibrium ( p =  [e[) have been previously discussed in spherical and 
also in spheroidal symmetries by some workers (Bonnor, 19615!; Bonnor and 
Wickramsuriya, 1975; Cooperstock and De La Cruz, 1978). We have in 
this paper proved an interesting theorem about static charged dust that the 
most general conformally flat charged dust in static equilibrium must be 
spherical ly symmetric and the solution is unique, i t  can also be 
matched with the outside electrovac. 

In Section 2 there are some general considerations, where we have 
obtained the exact form of g00 for the conformaUy flat metric having 
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spatial part completely Euclidean. The solution is obtained from the 
vanishing of the Weyl tensor alone. In Section 3 we have used this result to 
get the most general conformally flat solution of the Einstein-Maxwell 
equations corresponding to static charged dust in equilibrium irrespective 
of its symmetry. 

2. GENERAL CONSIDERATIONS 

We start with a metric in the form 

d s  2 = e 2 p  d t  2 - d x  2 - d y  2 - d z  2 (1) 

and assume that r is a function of all the space and time coordinates. It is 
interesting to find conditions on the function v in order that the metric (1) 
is conformally flat. In fact, the conforrnal flatness demands a specific form 
for r involving in general five arbitrary functions of time. The only 
nonvanishing Riemann-Christoffel curvature tensor component is 

0 R,,to = v,a + t,,,. v t (2) 

where Latin indices stand for 1, 2, 3, and x ~ =t.  The subscripts indicate 
ordinary differentiation with respect to the corresponding coordinates. The 
nonvanishing Ricci tensors and the Ricci scalar are 

R~t = ~ t  + l'~'t (3) 

3 

Roo = - e 2 ~  E (v~  +v~ 2) (4) 

and 

3 

R = - 2  E (~, +p2)  (5) 
K=I 

The general expression for the Weyl tensor (Eisenhart, 1926) is 

C~,~# = R ~ , l  ~ - (gNoR,I~ +g,t,R#l~} -- ) Rgt, t,~g#l ~ (6) 

In the above we have defined the Ricci tensor Rt, ~ as 

Rp.p ~ g a B R B ~ ,  a 
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Now in view of (2), (3), (4), and (5) the vanishing of the component C0.10 
of the Weyl tensor leads us to 

e),tel-- 1 - 38 , ,V(e"  ) (7) 

The symbol V stands for the three-dimensional ordinary Laplacian. 
Vanishing of all other components of the Weyl tensor leads us either to 
identity relations or to the same relation (7). In fact, from (7) one can 
easily conclude by elementary arguments that 

(e~)..t=0, xeal (8a) 

and 

(e~),l,= (e~), 22= (e~). 33 : f ( t )  (8b) 

f ( t )  being an arbitrary function of time. The solution for e ~ can be 
immediately arrived at and may be expressed as 

e ~ = 2 f ( t ) ( x  2 +y2 + z Z ) + a ( t ) x + b ( t ) y + c ( t ) Z + g ( t )  (9) 

where a, b, c, and g are other arbitrary functions of time. 

3. CONFORMALLY FLAT STATIC CHARGED DUST 

In view of the results obtained in Section 2 we arrive in this section at 
the most general class of solutions for conformally flat static charged dust. 
There are many interesting results in the literature about charged dust in 
static equilibrium. These belong to the interior Papapetrou-Majumdar 
class mentioned earlier. All such metrics can be expressed in the form 

ds 2 = e  ~ dt 2 - e  -~ (  dx  2 + dy 2 q-dz 2 ) (10) 

and the whole set of field equations in this case reduces to 

02V+ 02V+ 02V -41rp( l+V)  3 (11) 
OX 2 Oy 2 OZ 2 

where e ~ =(1 + V) -2 and p is the mass density of the dust. p vanishes in 
the outside empty space. The function v, however, is a function of space 
coordinates only for static configuration. One may at this stage attempt to 
find the most general conformally flat exact solutions of Einstein-Maxwell 
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equations corresponding to charged dust in equilibrium without any re- 
striction on the symmetry of the dust distribution. To do this one must 
restrict the function u in (10) so that the Weyl tensor vanishes. The line 
element (10) now can be conveniently written in the form 

ds 2 = e-"[  e 2~ dt z - (  dx 2 +dy 2 +dz2) ] (12) 

From the well-known properties of conformally flat metrics it follows that 
the metric represented by the expression within the parentheses in (12) is 
also conformally flat and one immediately gets the solution for e ~ in the 
expression (9) with f ,  a, b, c, and g, however, being constants, because of 
the static character of the metric. It can further be shown by elementary 
considerations that coordinate transformations like 

x ' = X + X o ,  Y '=Y+Yo,  z '=Z+Zo 

reduce the metric to be a function of the radial coordinate alone. In the 
above x 0, Y0, and z 0 are, however, constants. The solution finally appears 
in the form 

e ~ = (Ar  E +B)  (13) 

where A and B are constants. The line element (12) can now be written in 
the form 

ds 2 =(  Ar 2 + B ) d t  2 - ( A r  E + B ) - ' (  dr 2 +r2dO 2 +r2sin2 Odq, 2) (14) 

One now arrives at a quite general results that conformaUy flat static 
charged dust distribution in equilibrium can only be spherically symmetric 
and further the only such solution is given by (14). Now the metric in the 
exterior region in this case is the special case of the Reissner-Nordstrrm 
metric, which is given by 

ds 2 --(1 + m / r ) - 2  dt 2 - (1  +mlr )2 (  dr 2 +rZ dO 2 +r2sinUOdq~Z) (15) 

Here m is the mass or charge parameter, both of them being equal in this 
case. The interior metric (14) can be matched with the exterior metric (15) 
at the boundary r = r  0 provided 

m/ro 3 1 
A =  and B =  (16) 

(l+m/ro) 3 (1 +re~roY 
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The mass density, which is equal to the charge density, in the interior can 
be calculated from (11) and is given by 

_ m r  2 ~--1 4 ~ ' p = 3 m ( l + m  / 3(1+ _--~-J (17) 
ro 3 ro ! \ ro ] 

The mass density is maximum at the origin r = 0  and decreases outwards 
with positive value everywhere. Eventually the solutions given by (14) and 
(16) are exactly the one obtained previously by Bonnor and Wickramsuriya 
(1975) as a special case of spherically symmetric charged dust. Our results 
are more general in the sense that the above solution is the only static 
conformally flat solution corresponding to charged dust irrespective of any 
a priori assumption on its symmetry. 

The manifest form of the metric conformal to the Minskowskian metric 
may be obtained from equation (14) by the following transformations 
(Gurses and Gursey, 1975): With 

r 1 sin p 
B1/2 A1/2 1 +cosp  

B1/2t= 1 T 
2A1/2 

the line element reduces to 

(18) 

ds2= 1 2A(1 +coso) [ dT2 -do2- sin20 da2] (19) 

Again, with the transformation 

O = arc tan 
A1/2~ 

1 + (A/4)(r/2 _~2)  =arctan[ AlJ2  J 1_ (A//4)(~2_~2) ' 

the line element (19) finally takes the form 

ds 2 ~__.f(~, ,g/)( d.o2 _d~2 _~2 d~2) (2o) 

where the conformal factor f(~, ,/) is given by 

A 2 A2 1-1/2 X l + T ( r  / + 4 2 ) + - -  16 ( r /2 - s  e2) 



354 Banerjee and Som 

A C K N O W L E D G M E N T S  

Thanks are due to Professor A. Papapetrou for helpful suggestions and useful discus- 
sions. The authors acknowledge financial aid from F.I.N.E.P and C.N.Pq. of Brasil. 

R E F E R E N C E S  

Bonnor, W. B. (1960). Zeitschriftfftr Physik, 160, 59. 
Bonnor, W. B. (1965). Monthly Notices of the Royal Astronomical Society, 129, 443. 
Bonnor, W. B., and Wickramsuriya (1975). Monthly Notices of the Royal Astronomical Society, 

171t, 643. 
Cooperstock, F. I., and De La Cruz, V. (1978). General Relativity and Gravitation, 9, 835. 
Das, A. (1962). Proceedings of the Royal Society of London Series A, 267, 1. 
De, U. K., and Raychaudhuri, A. K. (1968). Proceedings of the Royal Society of London Series 

A, 303, 97. 
Eisenhart, L. P. (1926). Riemannian Geometry. Princeton University Press, Princeton, New 

Jersey. 
Gurses, M., and Gursey, Y. (1975). Nuovo Omento B, 25, 786. 
Majumdar, S. D. (1947). Physical Review, 72, 390. 
Papapetrou, A. (1947). Proceedings of the Royal Irish Academy, A51, 191. 


